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1. Introduction

Because of asymptotic freedom, one thinks that the structure and properties of high-

temperature quantum chromodynamics (QCD) should be accessible by perturbative means,

however these are organized [1]. Originally, the standard loop-expansion [2, 3] ran into

difficulties when attempting to describe the properties of slow-moving particles: gauge in-

variance was lost [4], a consequence of the fact that the standard loop-expansion did not

reflect anymore a systematic expansion in powers of the small coupling constant. A re-

organization of lowest-order terms in the correlation functions was therefore necessary and

indeed performed: the so-called hard thermal loops (HTL) were systematically extracted

from one-loop order diagrams and added to the lowest-order quantities [5 – 12]. It should

also be mentioned that the need for resummation of standard loop-expansion is not peculiar

to non-abelian theories but is also necessary in the abelian case, for quantum electrody-

namics (QED) [12] and scalar QED [13], as well as for the simpler ϕ4-theory [14]. Thus

are formed dressed propagators and vertices and a convenient description of the slow-

moving quasi-particles becomes possible. Next-to-leading order quantities, in this new

framework, are obtained via one-loop diagrams involving these dressed propagators and

vertices. In this new context, some of the old difficulties are cured but others persist, most

notably sensitivity to the infrared and the light-cone, essentially due to the fact that static
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(chromo)magnetic fields remain unshielded even after the HTL reorganization. In QCD,

these are thought of becoming screened at the so-called magnetic scale, which is believed

to manifest itself non-perturbatively in the dispersion relations at next-to-leading order.

Because of this, perturbation is believed to break down at some order, which depends on

the quantity under consideration [15 – 17].

Still, useful information can be extracted from the perturbative regime. Indeed, using

this method, an early explicit calculation of the zero-momentum transverse gluon damping

rate shows that it is finite and positive [18]. A similar computation for the quarks has

also been carried out independently in [19] and [20] and it yields a finite and positive

number too. As for the calculation of static quantities such as free energies and screening

masses, these are most conveniently carried out in the imaginary-time formalism since

analytic continuation to real time is not necessary [21] anymore. For such quantities,

there exists a simplified resummation scheme [22], based on the fact that in Euclidean

formalism, the momentum can be soft only for the zero mode in the Matsubara sum.

Hence dressing is necessary only for the static propagators, and calculations based on this

are relatively simpler to carry out than those of the full resummation, necessary when

considering dynamic quantities. The ‘reduced’ approach has been used in many instances

like in the study of phase transitions in gauge theories [22], the calculation of the free energy

in ϕ4-theory and QCD [23, 24] as well as in the computation of the electric screening mass

in QED and scalar QED [21]. Other important quantities in this regard are the next-

to-leading order Debye screening length [25] and next-to-leading order correction to the

gluonic plasma frequency [26].

But as mentioned, difficulties still persist after HTL reorganization. For example, log-

arithmic sensitivity is encountered in an early estimation of the damping rate for a heavy

fermion [8], and more generally for fast-moving particles [27 – 30]. Also, an estimation of

the damping of moving quasi-particles is logarithmically dependent on the coupling [31, 32].

Of particular importance in this regard is the work [33, 34] where it is emphasized that the

electron lifetime in the context of QED at finite temperature is plagued with infrared diver-

gences, even after taking into account screening effects, and this is due to the exchange of

unscreened ultrasoft magnetic photons with a contribution enhanced by the Bose-Einstein

distribution. It is shown that a finite-temperature generalization of the Bloch-Nordsieck

model allows the summation of the leading singular diagrams to all orders to obtain a

long-time behavior for the electron propagator of the form exp
[

− ẽ2T
4π t ln (ẽT t/3)

]

instead

of the generally assumed standard simple-pole behavior exp (−γt), where ẽ is the QED

coupling constant, T the temperature and γ the damping rate. This clearly indicates the

complexity of the analytic structure of the theory.

The infrared problem was also emphasized when attempting to estimate the damping

rates of non-moving longitudinal gluons [35, 36] and slow-moving quarks [37, 38]. As

just hinted to, what is of concern here is, partly, the analytic properties of QCD at finite

temperature in the infrared. In order to investigate some of these properties, the context of

scalar QED is useful because it offers a simpler setting in which calculations are facilitated

by the fact that there are no hard thermal loops in the vertices and those related to
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the scalar self-energy are momentum independent [13]. This situation allows sometimes

carrying out almost complete momentum-dependent calculations. Of particular interest to

us is an issue raised by the works [35, 36]: in order to carry forward analytically, one had to

expand in powers of the external momentum p, considered ultrasoft to ensure the validity of

the expansion, to allow one to perform intermediary solid-angle integrals which would have

been, otherwise, intractable analytically. The particular feature of this expansion is that it

was done in the imaginary-time formalism, before the Matsubara sum was performed and

the analytic continuation to real energies taken. The subsequent appearance of infrared

sensitivity in the final coefficients may then be linked to this ‘early expansion’. This is

more significant if we know that the damping rate for non-moving longitudinal gluons has

to be equal to the corresponding finite one for transverse gluons [39].

To tackle this specific issue in more depth, we embark in this work on the investigation

of the next-to-leading order dispersion relation for scalars with ultrasoft momentum p in

the context of next-to-leading order HTL perturbation of scalar QED. We will examine

both the damping rate γs (p) and the energy ωs (p). Note that the damping rate γs (p) has

already been investigated in [40] and found, to second order in p, logarithmically infrared

sensitive. In this work, the expansion of γs (p) is pushed to fourth order in p and that

of ωs (p) to second order. What is interesting is that we perform the expansions by two

different methods: (i) We delay the momentum expression until after the Matsubara sum

is performed and the analytic continuation to real energies taken. As for the damping rate

γs (p), we will find the coefficient of second order logarithmically sensitive to the infrared

cut-off η as in [40] whereas the coefficient of fourth order will behave like 1/η2 (odd-order

coefficients cancel). As for the energy ωs (p), no infrared sensitivity will appear. (ii) We

perform the early-momentum expansion and carry on with steps similar to [35, 36]. We

find exactly the same results as those of the previous method. This must alleviate some

pressure on the early-momentum expansion method: it may not be responsible for the

appearance of infrared sensitivity. In the context of QCD, there is simply little hope of

obtaining compact analytic expressions, and expansions such as the early-momentum one

are sometimes necessary.

This article is organized as follows. After this introduction, the second section recapit-

ulates the hard thermal loops and the dressing of the propagators. Section three discusses

the calculation of the scalar damping rate γs (p) by the two methods and section four the

calculation of the scalar energy ωs (p). Section five is devoted to the discussion of the re-

sults and includes some concluding remarks. An appendix is added and includes technical

details from section three for which there is no need to display there.

2. Dressing the propagators and the dispersion relation

Let us first recapitulate the results giving the propagators and vertices to be used in

the forthcoming next-to-leading order calculations. We use the imaginary-time formalism

in which the four-momentum is Pµ = (p0,p) such that P 2 = p2
0 + p2 with the scalar

Matsubara frequency p0 = 2πnT , n an integer and T the temperature. After the evaluation
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of all frequency sums, p0 is analytically continued to the real external energy ω using the

analytic continuation p0 = −iω + 0+.

2.1 Dressed propagators

To leading order, the self-energies are obtained from undressed one-loop diagrams. For soft

external momenta, that is for ω and p of order eT where e is the coupling constant, the

dominant contributions to these diagrams come from loop momenta of the order of T , the

hard scale. These contributions are called hard thermal loops. For the scalar self-energy,

the hard thermal loop is given by [13]:

δΣ = −m2
s, (2.1)

with ms = eT/2, the scalar thermal mass. Note that δΣ is momentum independent. When

dressed with the hard thermal loop, the leading-order propagator for the scalar becomes:

∗∆s (P ) =
1

P 2 + m2
s

. (2.2)

The hard thermal loop δΠµυ in the photon self-energy is given in [40] and can be

expressed in terms of two independent scalar functions δΠl(K) and δΠt(K) given by:

δΠl(K) = 3m2
p Q1

(

ik0

k

)

; δΠt(K) =
3

5
m2

p

[

Q3

(

ik0

k

)

− Q1

(

ik0

k

)

−
5

3

]

, (2.3)

where mp = eT/3 is the photon thermal mass and the Qi’s are Legendre functions of

the second kind. In the strict Coulomb gauge, the components of the dressed photon

propagator ∗∆µν (K) are as follows:

∗∆00 (K) = ∗∆l (K) , ∗∆0i (K) = 0;

∗∆ij (K) =
(

δij − k̂ik̂j

)

∗∆t (K) , (2.4)

where ∗∆l and ∗∆t are the propagators for the longitudinal and transverse photons respec-

tively. They have the following expressions:

∗∆l (K) =
1

k2 − δΠl (K)
; ∗∆t (K) =

1

K2 − δΠt (K)
. (2.5)

Now one peculiarity of scalar QED is that the vertices remain undressed, i.e., unaffected

by the hard thermal loops [13]. The vertex with one photon and two scalar external lines

(Q incoming, P outgoing) is:

Γµ (P,Q) = −e (P + Q)µ , (2.6)

and the vertex between two photons and two scalars is momentum independent and writes:

Γµν = 2e2 δµν . (2.7)
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2.2 Dispersion relation

The scalar damping rate γs (p) and energy ωs (p) are obtained from the scalar complex

energy ω which satisfies the following full scalar dispersion relation [40]:

ω2 = p2 − Σ (ω, p) , (2.8)

where Σ (ω, p) is the full scalar self-energy. Taking into account the next-to-leading order

terms in e and expanding everything around the leading order result ωs0 (p) (squared) for

fixed p, we obtain:

ω2 = p2 − δΣ (ωs0, p) − ∗Σ (ωs0, p) −
(

ω2 − ω2
s0

)

∂x2δΣ (x, p)|x=ωs0
+ O

(

e4T 2
)

. (2.9)

In this relation, ωs0 (p) =
√

m2
s + p2, pole of ∗∆s (P ) from (2.2) and solution to (2.8)

to lowest order. δΣ is nothing but the hard thermal loop given in (2.1) and ∗Σ is the

next-to-leading order contribution. Using (2.1), we can rewrite (2.9) as:

ω2 = ω2
s0 −

∗Σ (ωs0, p) + O
(

e4T 2
)

. (2.10)

The full energy ω (p) is in general complex. If we denote its real part (the scalar

energy) by ωs (p), then we have:

ωs (p) = ωs0 −
Re δ ∗Σ (ωs0, p)

2ωs0
+ O

(

e3T
)

. (2.11)

The prefix δ before ∗Σ in (2.11) indicates that the known leading hard-thermal-loop contri-

bution has to be subtracted for ultraviolet convergence [13]. The damping rate for scalars

is defined by γs(p) = −Imω (p). It is e-times smaller than ωs0(p), and so we have to lowest

order [40]:

γs (p) =
1

2ωs0
Im ∗Σ (ωs0, p) + O

(

e3T
)

. (2.12)

We see that determining γs (p) to lowest order in e and ωs (p) to next-to-leading order

amounts to calculating the imaginary and real parts of the next-to-leading order scalar

self-energy ∗Σ. From now on, we assume the scalar momentum p ultrasoft, i.e., of the order

of e2T . Also, we will take ms ≡ 1 in the sequel, to ease the notation. We will reintroduce

it back in the final expressions.

3. Scalar damping rate

We start by calculating the damping rate γs (p). The self-energy ∗Σ is the sum of two

contributions [40]:
∗Σ = ∗Σ1 + ∗Σ2, (3.1)

where the contribution ∗Σ1, shown in figure 1 [41], is a one-loop dressed diagram with two

one-photon-two-scalar vertices given in (2.6):

∗Σ1 (P ) = Trsoft [Γµ (P,Q) ∗∆s (Q) Γν (Q,P ) ∗∆µν (K)] , (3.2)

and the contribution ∗Σ2, shown in figure 2, is the dressed tadpole diagramwith a two-
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Figure 1: HTL-dressed one-loop-order scalar self-energy ∗Σ1.

photon-two-scalar vertex given in (2.7):

Figure 2: Next-to-leading order HTL-dressed scalar self-energy ∗Σ2.

∗Σ2 = Trsoft [Γµν ∗∆µν (K)] . (3.3)

In the above two relations, K is the internal photon loop-momentum, Q = P − K and

Tr ≡ T
∑

k0

∫

d3k /(2π)3 with k0 = 2nπT . The subscript ‘soft’ indicates that only soft

momenta are allowed in the integral. To take account of potential infrared sensitivity, we

will introduce an infrared cutoff η in the k-integration.

It turns out that ∗Σ2 is real. This is because there is only one dressed propagator

involved in its expression (3.3) and the vertex there is undressed. It will also turn out to

be momentum independent, see (4.6). Therefore, ∗Σ2 does not contribute to the damping

rate γs (p); it will only shift the mass ms of the scalar. We thus can simply write:

γs (p) =
1

2ωs0
Im ∗Σ1 (ωs0, p) + O

(

e3T
)

, (3.4)

and henceforth, we will not manipulate ∗Σ2 until we reach the calculation of the scalar

energy ωs (p) in section four.

3.1 Late momentum expansion

In this subsection, we will first perform the Matsubara sums and analytically continue to

real energies before expanding in powers of p. Using the structure (2.4) of the photon

propagator in the strict Coulomb gauge and the expression of the one-photon-two-scalar

vertex (2.6), we see that ∗Σ1(P ) is composed of two terms. The first term involves lon-

gitudinal photons and is denoted consequently by ∗Σ1l(P ), and the second one involves

transverse photons and is denoted by ∗Σ1t(P ). Let us look first at ∗Σ1l(P ). We have:

∗Σ1l(P ) = e2T
∑

k0

∫

d3k

(2π)3

[

(2p0 − k0)
2 ∗∆l (K) ∗∆s (Q)

]

. (3.5)
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Writing explicitly the integral over the solid angle of k̂ in a reference frame where p̂ is the

principal axis, we have:

∗Σ1l(P ) =
e2

4π2
T

∑

k0

∫ +∞

η
dk k2

∫ +1

−1
dx

[

(2p0 − k0)
2 ∗∆l (k0, k) ∗∆s (q0, q)

]

, (3.6)

with x = k̂.p̂. Note that q =
√

k2 − 2pkx + p2, which makes the integral over x not feasible

for the moment.

We want to perform the Matsubara sum over k0. For this, we use the spectral decom-

position of the two dressed propagators. In general, we have [42]:

∆i(k0, k) =

∫ 1/T

0
dτ eik0τ

∫ +∞

−∞

dω ρi(ω, k) (1 + n(ω)) e−ωτ , (3.7)

where i stands for l, t or s and n(ω) is the Bose-Einstein distribution. The explicit ex-

pressions of the spectral densities ρi are displayed in (3.12)-(3.15) below. Making this

replacement, the sum over k0 can now be performed. The subsequent steps are standard:

One imaginary-time integration is eliminated by a delta function and the second one yields

an energy denominator. Everywhere except in the energy denominator p0 is replaced by

2πnT . The analytic continuation to real energies is taken at this stage and obtained by the

replacement ip0 → ωs0(p)+ i0+. The imaginary part is extracted using the known relation

1/ (x + i0+) = Pr (1/x) − iπδ(x). We thus have:

Im ∗Σ1l(P ) = −
e2T

4π

∫ +∞

η
dk k2

∫ +1

−1
dx

∫ +∞

−∞

dω
ωs0 (2ωs0 − ω)2

ω (ωs0 − ω)
ρl (ω, k) ρs (ωs0 − ω, q) .

(3.8)

In the above relation, only soft values of ω are to contribute in the integral, and so we have

used the approximation n (ω) ' T/ω.

The transverse contribution ∗Σ1t is handled in similar steps and we obtain for its

imaginary part the following expression:

Im ∗Σ1t(P ) =
e2T

π
p2

∫ +∞

η
dk k2

∫ +1

−1
dx

(

1−x2
)

∫ +∞

−∞

dω
ωs0

ω(ωs0 − ω)
ρt(ω, k)ρs(ωs0 −ω, q).

(3.9)

Note that the transverse contribution to γs (p) already starts at order p2.

Now dividing by 2ωs0 (p) as required in (3.4), we get the following longitudinal and

transverse contributions to the damping rate:

γsl(p) = −
e2T

8π

∫ +∞

η
dk k2

∫ +1

−1
dx

∫ +∞

−∞

dω
(2ωs0 − ω)2

ω (ωs0 − ω)
ρl (ω, k) ρs (ωs0 − ω, q) ;

γst (p) =
e2T

2π
p2

∫ +∞

η
dk k2

∫ +1

−1
dx

∫ +∞

−∞

dω

(

1 − x2
)

ω (ωs0 − ω)
ρt (ω, k) ρs (ωs0 − ω, q) . (3.10)

According to (3.4), the damping rate itself will be:

γs (p) = γsl (p) + γst (p) . (3.11)

– 7 –
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Next we move to perform the integrals involved in the expressions of (3.10) above. The

spectral densities ρl,t are known [42, 12]:

ρl,t (ω, k) = zl,t (k) [δ (ω − ωl,t (k)) − δ (ω + ωl,t (k))] + βl,t (ω, k) Θ
(

k2 − ω2
)

, (3.12)

where zl,t (k) are the residue functions and βl,t (ω, k) the cut functions. The residue func-

tions are given by:

zl(k) = −
ω

(

ω2 − k2
)

k2 (4/3 − ω2 + k2)

∣

∣

∣

∣

∣

ω=ωl(k)

; zt(k) =
ω

(

ω2 − k2
)

4ω2/3 − (ω2 − k2)2

∣

∣

∣

∣

∣

ω=ωt(k)

, (3.13)

and the cut functions have the following expressions:

βl(k, ω) = −
2ω

3k

[

(

4/3 + k2 −
2ω

3k
ln

k + ω

k − ω

)2

+
4π2ω2

9k2

]−1

, (3.14)

βt(k, ω) =
ω
(

k2 − ω2
)

3k3

[

(

k2 − ω2 +
2ω2

3k2

(

1 +
k2− ω2

2kω
ln

k + ω

k − ω

))2

+

(

πω
(

k2− ω2
)

3k3

)2
]−1

.

Remember that all quantities are in units of ms. The spectral density ρs does not have a

cut. It simply writes:

ρs (ω, k) = zs (k) [δ (ω − ωs0 (k)) − δ (ω + ωs0 (k))] , (3.15)

with zs (k) = 1/2ωs0 (k).

We therefore replace the spectral densities by their respective expressions (3.12) and

(3.15). The integration over ω disappears with the delta functions of (3.15). From the

expression of ρl,t in (3.12), there are going to be two kinds of contributions, i.e., a δ-

contribution and a Θ-contribution. Because of kinematics, the δ-contribution is always zero

whereas the Θ-contribution survives. The integrations over x and k have to be performed

numerically. One would fit the behaviors of γsl (p) and γst (p) to several ultrasoft values

of p, but in the spirit of the present work and in order to make direct comparison with

the early momentum expansion method to be presented shortly, we display the results for

γsl (p) and γst (p) in powers of p to fourth order. We obtain:

γsl (p) =
e2T

16π

[

1.44253 + 0.309278 p̄2 − 0.133949p̄4 + O
(

p̄6
)]

+ O
(

e3T
)

;

γst (p) =
e2T

4π

[

− (1.65937 + 1.62114 ln η̄) p̄2

+

(

71.3264 + 57.4152 ln η̄ +
1.94537

η̄2

)

p̄4 + O
(

p̄6
)

]

+ O
(

e3T
)

. (3.16)

The thermal mass ms has been reintroduced and here, p̄ = p/ms and η̄ = η/ms.

To order p̄2, these are the results obtained already in [40]. Note that the longitudinal

contribution γsl (p) is safe from any infrared sensitivity whereas the transverse contribution

γst (p) is infrared sensitive, this despite the fact that both contributions have been handled
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in exactly similar ways. The reason why we have wanted to push the expansion to order p̄4

is to show that other forms of infrared sensitivity may appear, other than the familiar ln η̄.

Indeed, we clearly see the power-like behavior 1/η̄2 in the p̄4-coefficient of γst (p). These

issues will be furthered in section five. According to (3.11), the scalar damping rate is:

γs (p) =
e2T

16π

[

1.44253 − (6.32820 + 6.48456 ln η̄) p̄2

+

(

285.172 + 229.661 ln η̄ +
7.78148

η̄2

)

p̄4 + O
(

p̄6
)

]

+ O
(

e3T
)

. (3.17)

3.2 Early momentum expansion

Now let us perform the same calculation while introducing from the start an early mo-

mentum expansion, before the Matsubara sum and analytic continuation to real energies

are done. First we perform analytically the integrals over the solid angle of k̂ in the same

reference frame where p̂ is the principal axis. The difficulty comes from the presence of

functions of q =
√

k2 − 2pkx + p2, mainly the scalar dressed propagator ∗∆s (q0, q). These

need to be expanded and, in order to do this, we use the following expansion to fourth

order in the external momentum p:

∗∆s (q0, q) =

[

1 − px ∂k +
p2

2

[

1 − x2

k
∂k + x2∂2

k

]

+
p3x

2

[

1 − x2

k2
∂k −

1 − x2

k
∂2

k −
x3

3
∂3

k

]

+
p4

4k

[

−
(

1− 6x2+ 5x4
)

2k2
∂k

+

(

1− 6x2+ 5x4
)

2k
∂2

k + 2x2
(

1− x2
)

∂3
k +

x4 k

6
∂4

k

]

+ O
(

p5
)

]

∗∆s (q0, k) . (3.18)

Here ∂k stands for ∂/∂k and, remember, x = k̂.p̂. Consider first ∗Σ1l(P ). Insert the above

expansion in its expression (3.5) and then perform the integrations over x which become

straightforward. All odd orders in p cancel out and we are left with:

∗Σ1l(P ) =
e2

2π2
T

∑

k0

∫ +∞

η
dk k2 (2p0 − k0)

2 ∗∆l (k0, k)

×

[

1 +
p2

3

(

1

k
∂k +

1

2
∂2

k

)

+
p4

30

(

∂3
k +

k

4
∂4

k

)

+ O
(

p6
)

]

∗∆s (q0, k) . (3.19)

Only at this stage the Matsubara sum and analytic continuation to real energies are done.

Here too we replace the dressed propagators by their spectral decompositions given in (3.7)

and follow the standard steps sketched right after (3.7) in order to extract the imaginary

part. Dividing by 2ωs0 (p) as indicated in (2.12), we obtain the following expression:

γsl(p) = −
e2T

4π

∫ +∞

η
dk k2

∫ +∞

−∞

dω
(2ωs0 − ω)2

ω (ωs0 − ω)
ρl(ω, k)

×

[

1 +
p2

3

(

1

k
∂k +

1

2
∂2

k

)

+
p4

30

(

∂3
k +

k

4
∂4

k

)

+ O
(

p6
)

]

ρs(ωs0 − ω, k). (3.20)
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The transverse-photon contribution ∗Σ1t(P ) is handled in similar steps. Dividing by

2ωs0 (p), we obtain from it the following transverse contribution to the damping rate:

γst(p) =
2e2T

3π
p2

∫ +∞

η
dk k2

∫ +∞

−∞

dω

ω (ωs0 − ω)
ρt(ω, k)

×

[

1 +
2p2

5

(

1

k
∂k +

1

4
∂2

k

)

+ O
(

p6
)

]

ρs(ωs0 − ω, k). (3.21)

As one sees, there are different types of terms involved in (3.20) and (3.21). In the sequel,

we will briefly show how we carry through with the simplest of such terms and relegate the

others to the appendix.

The simplest of the integrals we have to handle is the one that involves a ρρ contribution

with no derivatives. Generically, we consider an integral of the type:

Iρρ =

∫ +∞

η
dk

∫ +∞

−∞

dωf(k, ω, 1 − ω)ρi(ω, k)ρs(1 − ω, k), (3.22)

where i stands for l (longitudinal) or t (transverse). According to the form of the spectral

functions (3.12) and (3.15), there are two kinds of contributions: a δδ (residue-residue)

contribution and a Θδ (residue-cut) contribution. The δδ contribution requires that the

energies satisfy ±ωs0(k) ± ωi(k) = 1, four constraints which are always forbidden by the

dispersion relations. Hence the δδ contribution is always zero because of kinematics. The

Θδ contribution writes
∫ +∞

η
dk

∫ +∞

−∞

dωf(k, ω, 1 − ω) zs(k)βi(k, ω) [δ(1 − ω − ωs0) − δ(1 − ω + ωs0)] Θ(k − |ω|).

A non-zero contribution must satisfy ω = 1 ± ωs0, together with −k ≤ ω ≤ k. It is not

difficult to see that only the case ω = 1 − ωs0(k) is allowed, and this for all values k ≥ η.

The integration over ω is straightforward and we obtain for this type of integral:

Iρρ =

∫ +∞

η
dk zsf(k, 1 − ωs0, ωs0)βi (k, 1 − ωs0) . (3.23)

Note that only integrals of the type Iρρ contribute to the coefficient of lowest order in p

in the scalar damping rate. As already mentioned, the other terms are presented in the

appendix. They are worked out along similar lines, with more care when derivatives of

distributions are present.

At the present stage, we are ready to evaluate the integrals. Let us work out a specific,

general enough, example in some detail. Let us take it from the coefficient of p4 in the

expression in (3.21) for γst (p), namely the ρt (ω, k) ∂kρs (1 − ω, k) contribution. The cor-

responding function f is f(k, ω, ω′) = k/ (ωω′). The integral involved is of the type Iρ∂kρ,

see (A.2). Let us look at the first term z
′
sf(k, 1−ωs0, ωs0) βt (k, 1 − ωs0) where ωs0 stands

here for ωs0 (k). Using the expressions of f , the residue function zs (k) given after (3.15)

and βt (k, 1 − ωs0) given in (3.14), we perform a small-k expansion of the product to obtain

the following small-k behavior:

z
′
sf(k, 1−ωs0, ωs0)βt (k, 1 − ωs0) = −0.607927 /k+4.70205 k+30.0885 k3 +O

(

k5
)

. (3.24)
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It is clear that this is going to lead to a logarithmic divergence. To extract this divergence

from the integral, we split the latter into two parts: one integration from η to any finite

number plus one second integration from that finite number to +∞. The integral writes

then:

∫ +∞

η
dk z

′
sf(k, 1 − ωs0, ωs0)βt (k, 1 − ωs0) = 0.607927 ln η − 0.607927 ln ks0(`)

+

∫ ks0(`)

0
dk

[

z
′
sf(k, 1 − ωs0, ωs0)βt (k, 1 − ωs0) + 0.607927/k

]

+

∫ 1

`
dx z

′
sf(k, 1 − ωs0, ωs0)βt (k, 1 − ωs0)

∣

∣

k=ks0(x)
. (3.25)

What we have done is simple. In the finite part (the third term in (3.25)), we have

changed the integration variable from k to x ≡ k/ωs0(k), which implies that k ≡ ks0(x).

Note that k → ∞ implies x → 1. The finite value in question that splits the original

integral into two parts is then chosen in terms of x instead of k and is denoted by `.

The second term in (3.25) is the original divergent piece of the total integral from the

integrand of which we have subtracted −0.607927 /k in order to render it safe in the in-

frared, and hence the lower bound η is replaced by 0. We must then of course add the

contribution −0.607927
∫ ks0(`)
η

dk
k = 0.607927 ln η − 0.607927 ln ks0(`). As already men-

tioned, the finite value ` is arbitrary, but practically it must be chosen small enough

in order to make the integral
∫ ks0(`)
0 dk [z′sf(k, 1 − ωs0, ωs0) βt (k, 1 − ωs0) + 0.607927/k]

numerically feasible. Indeed, though we are assured of its finiteness analytically, both

integrands z
′
sf(k, 1 − ωs0, ωs0) βt (k, 1 − ωs0) and 0.607927/k are still each (here logarith-

mically) divergent for small k. However, when ` is small, we can use a small-k expansion

in order to get a number for the integral. We have pushed the expansion to O(k11) and we

start having good convergence for already ` = 0.6. Also, we must (and do) check that the

final result does not depend on a particular value of `. We finally get:

∫ +∞

η
dkz

′
sf(k, 1 − ωs0, ωs0)βt (k, 1 − ωs0) = 0.607927 ln η + 0.702549. (3.26)

Now to the second contribution to the example we have chosen to detail, which is
∫ +∞

η dk ω′
s0 zs ∂ω [f(k, 1 − ω, ω)βi (k, 1 − ω)]|ω=ωs0

. A small-k expansion of the integrand

yields:

ω′
s0 zs ∂ω [f(k, 1 − ω, ω)βt (k, 1 − ω)]|ω=ωs0

= −2.43171/k3 +24.8687/k−208.701k+O(k3 ).

(3.27)

Here we have a 1/η2 behavior in addition to the familiar ln η. We therefore write:

∫ +∞

η
dk ω′

s0 zs ∂ω [f(k, 1 − ω, ω)βt(k, 1 − ω)]|ω=ωs0

= −1.215 9/η2 + 1. 215 9/ks(`)
2 − 24.8687 ln η + 24.8687 ln ks(`)

+

∫ ks0(`)

0
dk

[

ω′
s0 zs ∂ω [f(k, 1 − ω, ω)βt(k, 1 − ω)]|ω=ωs0

+
2.43171

k3
−

24.8687

k

]
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+

∫ 1

`
dxω′

s0 zs ∂ω [f(k, 1 − ω, ω)βt(k, 1 − ω)]|k=ks0(x) . (3.28)

We have proceeded as already explained. The integrations are smooth and no additional

particular problem arises. Good convergence starts at ` = 0.6 and the `-independence of

the sum is checked systematically. The final result is:

∫ +∞

η
dkω′

s0zs∂ω[f(k, 1 − ω, ω)βt(k, 1 − ω)]
∣

∣

ω=ωs0

= −1. 215 9/η2 − 24.8687 ln η − 27.2104.

(3.29)

Putting these two contributions together, we arrive for this specific example at:

Iρ∂kρ|example = −1. 215 9/η2 − 24.26077 ln η − 26.507851. (3.30)

All the terms are treated along similar steps: infrared divergences are systematically

detected by a small-k expansion and extracted manually; the finite-part integrals performed

numerically. We sum all the contributions and obtain exactly the two results (3.16) for

γsl (p) and γst (p), namely:

γsl (p) =
e2T

16π

[

1.44253 + 0.309278 p̄2 − 0.133949p̄4 + O
(

p̄6
)]

+ O
(

e3T
)

;

γst (p) =
e2T

4π

[

− (1.65937 + 1.62114 ln η̄) p̄2

+

(

71.3264 + 57.4152 ln η̄ +
1.94537

η̄2

)

p̄4 + O
(

p̄6
)

]

+ O
(

e3T
)

. (3.31)

Note that by this method too the longitudinal contribution γsl (p) is free from any infrared

divergence whereas the transverse contribution is infrared sensitive.

4. Scalar energy

Now we turn to the determination of the scalar energy ωs (p) to next-to-leading order in

the coupling constant e. It is defined in (2.11). We want also to obtain it in both the late

and early p-expansion. We will see that in this case too the same result is obtained, free

from any infrared divergence.

4.1 Late momentum expansion

Recall that the next-to-leading order self-energy ∗Σ is the sum of two diagrams ∗Σ1 and ∗Σ2,

see (3.1), (3.2) and (3.3). Recall also that we have stated that ∗Σ2 is real. Indeed, using

the structure of the two-photon-two-scalar vertex (2.7) and that of the photon propagator

in the strict Coulomb gauge (2.4), we have:

∗Σ2 = 2e2 T
∑

k0

∫

d3k

(2π)3
[ ∗∆l(K) + 2 ∗∆t(K)] . (4.1)
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The angular integrals over the k-solid angle and the sum over k0 are done as explained

before. No p-expansion is needed. We obtain the following expression:

∗Σ2 =
e2T

π2

∫ +∞

η
dk k2

∫ +∞

−∞

dω

ω
[ρl(ω, k) + 2ρt(ω, k)] , (4.2)

as just restated, real. On the contrary, ∗Σ1 has an imaginary part which we have just

manipulated in the previous section, both with late and early p-expansions. One useful

way to obtain the real part of ∗Σ1 is to use its imaginary part and the following dispersion

relation [13]:

Re Tr∗∆l,t(k0, k) ∗∆s(q0, q)f(k) =

∫ +∞

−∞

dt

t − ωs0

1

π
[Im Tr ∗∆l,t(k0, k) ∗∆s(q0, q)f(k)]ωs0=t.

(4.3)

Using this dispersion relation and performing the Matsubara sum before any momentum

expansion, we obtain for the real part of the longitudinal contribution ∗Σ1l the following

expression:

Re ∗Σ1l(P ) = −
e2T

4π2

∫ +∞

η
dk k2

∫ +∞

−∞

dt

t − ωs0

∫ +1

−1
dx

∫ +∞

−∞

dω
(2ωs0 − ω)2t

ω(t − ω)
ρl(ω, k)ρs(t−ω, q).

(4.4)

Remember, x = k̂.p̂. For the transverse contribution ∗Σ1t, we obtain the following expres-

sion:

Re ∗Σ1t(P ) =
e2T

π2
p2

∫ +∞

η
dk k2

∫ +∞

−∞

dt

t − ωs0

∫ +1

−1
dx

(

1 − x2
)

×

∫ +∞

−∞

dω

ω (t − ω)
t ρt (ω, k) ρs (t − ω, q) . (4.5)

The next step is to perform the integrals in (4.2), (4.4) and (4.5). For ∗Σ2, we replace

the photon dispersion relations by their expressions in (3.12). The residue part leaves one

integration over k and the cut part restricts the integration over ω between −k and k.

Otherwise the integrations themselves are done numerically. No early or late momentum

expansion is necessary and no special problem arises. In particular, the infrared behavior

is safe. Recall that we have to subtract the leading order terms for ultraviolet convergence

as indicated after (2.9). From the longitudinal photon we obtain −0.183776 e2T and from

the transverse photon −0.000443967 e2T , a much smaller contribution. Summing the two,

we get:
∗Σ2 = −0.184 22 e2T + O

(

e3T
)

. (4.6)

No p-dependence as announced previously, which means ∗Σ2 will only correct the scalar

thermal mass ms, a correction free from any infrared divergence.

To perform the integrations in (4.4) and (4.5), we replace the scalar and photon spectral

densities by their respective expressions (3.15) and (3.12). Because the scalar spectral

density does not involve a cut, the integration over t is trivial. Here too we could give values

to the external momentum p and fit the resulting curves, but in the spirit of the present

work and in view of the coming comparison with the results from the early momentum
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expansion method, we expand the integrand in powers of p and perform analytically the

integration over x. The residue part in the photon spectral density will only leave the

integration over k whereas the cut part will restrict the integration over ω. The remaining

single and double integrals are done numerically. Here too no special problem arises and

the infrared region is safe. After subtracting the corresponding leading-order terms for

ultraviolet convergence, we obtain:

Re ∗Σ1l(P ) = e2T
[

−0.0746037 − 0.0201876 p̄2 + O(p̄4)
]

+ O
(

e3T
)

;

Re ∗Σ1t(P ) = e2T
[

−0.165908 p̄2 + O(p̄4)
]

+ O
(

e3T
)

. (4.7)

It remains to sum (4.6) and (4.7) and divide by 2ωs0 (p) as instructed in (2.11) to obtain

the scalar energy:

ωs (p) = ms

[(

1 + 0.258824 e + O
(

e2
))

+
(

0.5 + 0.056684 e + O
(

e2
))

p̄2 + O(p̄4)
]

. (4.8)

4.2 Early momentum expansion

Finally, let us recalculate the scalar energy ωs (p) while introducing the expansion in p at

an early stage, before performing the Matsubara sum. Since ∗Σ2 does not depend on p,

it will not be affected by this expansion; only ∗Σ1 is affected. As in the calculation of

γs (p), the integration over x becomes straightforward. We do the Matsubara sum and

analytically continue to ωs0 (p). We obtain for the longitudinal contribution:

Re ∗Σ1l(P ) = −
e2T

2π2

∫ +∞

η
dk k2

∫ +∞

−∞

dt

t − ωs0

∫ +∞

−∞

dω

ω (t − ω)
ρl(ω, k)

× t (2ωs0 − ω)2
[

1 +
p2

3

(

1

k
∂k +

1

2
∂2

k

)

+ . . .

]

ρs(t − ω, k). (4.9)

Odd powers in p cancel. The transverse contribution (4.5) is already of order p2 and

does not need further p-expansion. The x-integral done, Matsubara sum and analytical

continuation to ωs0 (p) performed, we obtain:

Re ∗Σ1t(P ) =
4e2T

3π2
p2

∫ +∞

η
dk k2

∫ +∞

−∞

dt

t − ωs0

∫ +∞

−∞

dω

ω (t − ω)
t ρt(ω, k) ρs(t − ω, k).

(4.10)

What remains now is to plug in the expressions of the spectral densities and perform

the integrals over ω and t, and then over the momentum k. The scalar spectral density

ρs has no cut part, which makes the integration over t simple. The residue part in ρl,t

eliminates the integration over ω and the cut part restricts its limits. Numerical work is

needed for the rest. Here follows a display of generic terms. First we have the type:

Rρρ =

∫ +∞

η
dk

∫ +∞

−∞

dt

∫ +∞

−∞

dωf(k, ω, t)ρi(k, ω)ρs(k, t − ω)

=

∫ +∞

η
dk [zi zs[f(k, ωi, ωi + ωs0) − f(k, ωi, ωi − ωs0) − f(k,−ωi,−ωi + ωs0)

+ f(k,−ωi,−ωi − ωs0)]
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+

∫ +k

−k
dωzsβi (k, ω) [f(k, ω, ω + ωs0) − f(k, ω, ω − ωs0)]]. (4.11)

The subscript i stands for l or t. Note that only integrals of type Rρρ contribute to the

coefficient of zeroth order in p in the real part. The second type of integrals is the following:

Rρ∂kρ =

∫ +∞

η
dk

∫ +∞

−∞

dt

∫ +∞

−∞

dωf(k, ω, t) ρi(k, ω) ∂kρs(t − ω, k) (4.12)

=

∫ +∞

η
dk

[

zi z
′
s[f(k, ωi, ωi + ωs0) − f(k, ωi, ωi − ωs0) − f(k,−ωi,−ωi + ωs0)

+ f(k,−ωi,−ωi − ωs0)] + ω′
s0 zi zs[∂t (f(k, ωi, t) + f(k,−ωi,−t))|t=ωi+ωs0

+ ∂t (f(k, ωi, t) + f(k,−ωi, t))|t=ωi−ωs0
] +

∫ +k

−k
dω

[

z
′
sβi(k, ω) [f(k, ω, ω + ωs0)

− f(k, ω, ω − ωs0)] + ω′
s0 zsβi(k, ω)[∂tf(k, ω, t)|t=ω+ωs0

+ ∂tf(k, ω, t)|t=ω−ωs0
]]].

The third and last type of integrals is the one involving a second-order derivative in k; it

writes:

Rρ∂2

k
ρ =

∫ +∞

η
dk

∫ +∞

−∞

dt

∫ +∞

−∞

dωf(k, ω, t) ρi(k, ω) ∂2
kρs(t − ω, k) (4.13)

=

∫ +∞

η
dk

[

zi

(

z
′′
s + ω′2

s0 zs∂
2
t

)[

(f(k, ωi, t))|t=ωi+ωs0
− (f(k, ωi, t))|t=ωi−ωs0

− (f(k,−ωi, t))|t=−ωi+ωs0
+ (f(k,−ωi, t))|t=−ωi−ωs0

]

+
(

2ω′
s0 z

′
s + ω′′

s0 zs

)

zi

×
[

∂t(f(k, ωi, t) + f(k,−ωi,−t))|t=ωi+ωs0
+ ∂t(f(k, ωi, t) + f(k,−ωi, t))|t=ωi−ωs0

]

+

∫ +k

−k
dω

[

(

z
′′
s + zsω

′2
s0∂

2
t

)

βi(k, ω)
[

∂2
t f(k, ω, t)

∣

∣

t=ω+ωs0

− ∂2
t f(k, ω, t)

∣

∣

t=ω−ωs0

]

+
(

2ω′
s0 z

′
s + ω′′

s0 zs

)

βi(k, ω)
[

∂tf(k, ω, t)|t=ω+ωs0
+ ∂tf(k, ω, t)|t=ω−ωs0

]]]

.

Using these generic results, we perform the integrals numerically. We do not encounter

any additional problem and we find all the integrals safe in the infrared. Here too we have to

subtract the leading-order terms for ultraviolet convergence and, putting all contributions

together, the numerical integrations yield the result:

ωs (p) = ms

[(

1 + 0.258824 e + O
(

e2
))

+
(

0.5 + 0.056684 e + O
(

e2
))

p̄2 + O(p̄4)
]

. (4.14)

This is exactly the same result (4.8) obtained with the late momentum expansion. We

should note the fact that there is no infrared sensitivity in the above expression, even

though it has been technically more involved to derive than the damping rate γs (p).

5. Discussion

This work aimed at calculating the damping rate γs (p) and energy ωs (p) for scalars in the

context of next-to-leading order hard-thermal-loop perturbation theory of scalar QED. For

each of the two quantities, we have carried out the calculation in two ways: using both a late
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and early external momentum expansion, respectively after and before the Matsubara sum

is done and the analytic continuation to real energies taken. Though technically different,

both methods yield the same results for the damping rate and energy.

As mentioned in the introduction, this issue is particularly interesting in view of an

early work [35, 36] in which the early momentum expansion was used in the context of next-

to-leading order hard-thermal-loop perturbation of hot QCD in order to extract analytically

a value for the non-moving longitudinal-gluon damping rate γgl (0). The very definition of

that quantity imposed a systematic expansion in powers of the external momentum p, at

least to second order. From a technical point of view, the question was where to perform

the expansion. Ideally, the latest possible, at least after the Matsubara sum and analytic

continuation to real energies are done. But technically that was unfortunately not feasible

in QCD because of the complication of the intermediary steps, at least if one wanted

to carry through analytically. The early momentum expansion was used instead, and

legitimately the occurrence of infrared sensitivity of the result was partially incriminated

on this particular step.

The present work shows that infrared divergences can occur without the early momen-

tum expansion. This is clear in the transverse contribution γst (p) to the scalar damping

rate, see (3.16). Remember that up to order p2, this result with the logarithmic diver-

gence is already found in [40]. The reason we have pushed the calculation to order p4 is

to demonstrate that other forms of divergences do occur, here a 1/η2. This was the case

in QCD too. Since these results are obtained without the early momentum expansion and

the same results are obtained with it, we think we have here a strong indication that this

latter is not responsible for any infrared sensitivity.

Furthermore, infrared sensitivity is not systematic when we perform a momentum

expansion, late or early. This is exemplified in the longitudinal contribution γsl (p) to the

damping rate, see (3.16), and, maybe more pertinently since the calculations are more

intricate, in the scalar energy ωs (p). It is true that only fourth order in p is included in

the determination of γsl (p) and second order in the determination of ωs (p), but the trend

of the calculations indicates that higher-order coefficients will eventually be safe.

A couple of objections may still rise. First, one could argue that in fact, the late

and early momentum expansions are actually the same for the quantities we have treated

since the expressions of these, before any momentum expansion is performed, are still not

analytically closed in terms of p. To answer this objection, one can go to the photonic sector

of scalar QED treated in [13]. Indeed, the HTL-summed next-to-leading order photon self-

energies are evaluated in closed form for all ω and p. Let us focus only on the longitudinal

photons. Three regions in ω and p are to be distinguished: ω2 < p2 (region I), p2 < ω2 <

4m2
s + p2 (region II) and 4m2

s + p2 < ω2 (region III). The longitudinal next-to-leading

order HTL-summed photon self-energy is found to have the following expression [13]:

δ ∗Πl (ω, p) =
e2T

8π

ω2 − p2

p2

[

4ms + 2iε − i
ω2

p
ln

(

2ms − i (ε + p)

2ms − i (ε − p)

)]

, (5.1)

where the prefix δ indicates here too that the known leading hard-thermal-loop contribution

has been subtracted for ultraviolet convergence, and ε = Θ in regions I and III and ε = i |Θ|
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in region II, with Θ2 (ω, p) = ω2
(

ω2 − p2 − 4m2
s

)

/
(

ω2 − p2
)

. The full longitudinal-photon

dispersion relation is:

Ω2
l = p2 + Πl (Ωl, p) , (5.2)

where Πl is the full longitudinal-photon self-energy, and, up to next-to-leading order, writes:

Ω2
l (p) = ω2

l (p) +
δ ∗Πl (ωl, p)

1 − ∂ω2

l

δΠl (ωl, p)
, (5.3)

where δΠl (ω, p) is the hard thermal loop given by [13]:

δΠl (ω, p) = 3m2
p

(

1 −
ω2

p2

)(

1 −
ω

2p
ln

ω + p

ω − p

)

, (5.4)

with mp = eT/3 the photon thermal mass and ωl (p) the on-shell longitudinal photon

energy, solution to (2.8) to lowest order where only the hard thermal loop is kept in the

self-energy. Using (5.4), we can rewrite (2.9) as:

Ω2
l (p) = p2 + δΠl (ωl, p) +

2ω2
l (p)

3m2
p + p2 − ω2

l (p)
δ ∗Πl (ωl, p) . (5.5)

Remember that all these results involve no expansion in p and the Matsubara sum and

analytic continuation to real energies are already done. Also, all intermediary integrals are

performed. Now we expand. The region of interest to us is region II, where we are allowed

to perform the following expansion:

ωl (p) = 1 +
3

10
p̃2 −

3

280
p̃4 + O

(

p̃6
)

; p̃ = p/mp. (5.6)

Using this, we perform the expansion of (2.10) in powers of p̃. It is straightforward and we

find:

Ω2
l (p) = m2

p

[

(

1 − 0.368 e + O
(

e2
))

+

(

3

5
− 0.0536 e + O

(

e2
)

)

p̃2 + O(p̃4)

]

. (5.7)

Here we have together the leading and next-to-leading orders in the coupling e. Note that

there is no infrared sensitivity. What remains now is to perform the expansion in powers

of p̃ before the Matsubara sum and analytic continuation to real energies are done, and

carry on with steps similar to what we have gone through in this work. This we do and we

obtain exactly the same result (5.7). There is no need to display the results we think. This

is an additional indication that the early momentum expansion works. Of course, when it

can be avoided like in the present context of scalar QED, there is no need to use it. But

in the context of hot QCD, a more realistic theory, it is sometimes necessary if one wants

to manipulate analytically.

One may then argue that if the calculations are to lead to infrared sensitivity, then

the regularization with an infrared cut-off η should not be used in the first place. To an-

swer this, one can say that, first of all, infrared sensitivity is not systematic in all similar

quantities that are treated by similar methods. We have seen a good example of this in
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this work, which is the two contributions to the scalar damping rate γs (p): the longitu-

dinal contribution γsl (p) is infrared safe and the transverse contribution γst (p) infrared

sensitive, though both are calculated in exactly the same manner. Hence infrared sensi-

tivity may be a feature of the physical quantity in question. Furthermore, we could have

taken the transverse contribution γst (p), made no expansion in p and tried to determine

it numerically for different values of p without introducing any infrared cutoff. Then the

internal momentum k -integration would not converge, because precisely of the very in-

frared sensitivity. One could argue that the regularization should be different from the

naive introduction of an infrared cut-off. But, in whatever way it is chosen, regularization

will only exhibit a potential infrared sensitivity; it will not remove or cancel it. For that

purpose, some other procedure has to be invoked, and we have never meant to do that.

This particular issue would be pursued elsewhere.

Finally, one may legitimately ask how one circles back from this work to the motivating

issue itself, namely the determination of the longitudinal-gluon damping rate γgl (0). The

introduction of an infrared cutoff η means that a given quantity λ like the damping rate

or the energy is the sum of two contributions:

λ = λ0−η + λη−∞, (5.8)

where 0−η means integration over loop momenta from zero to η and η−∞ means integra-

tion from η to ∞. All our calculations determine only λη−∞ and not λ0−η. Two distinct

situations may arise: (i) The limit η → 0 of λη−∞ is finite, in which case λ0−η goes to zero

in this limit and the whole λ is safely reached via λη−∞ in the limit η = 0. This is the case

for γsl (p) and ωs (p) in the present work. (ii) The limit η → 0 of λη−∞ is divergent, which

means λ0−η is of significant contribution that must not be neglected. This is the situation

of γst (p) in the present work and, indeed, of γgl (0) in [35, 36]. In this second case, the

physical λ cannot be reached via λη−∞ in the limit η → 0. This is what could be called

infrared or ultrasoft sensitivity.

In the work [39] has been derived a Slavnov-Taylor identity for the gluon polarization

tensor in the Coulomb gauge and applied to the next-to-leading-order contribution. The

identity recovers already known transversality conditions, and when applied to the imagi-

nary part of next-to-leading order HTL-summed gluon self-energy, it implies the equality

between the damping rates for non-moving transverse and longitudinal gluons. It is in-

structive to recall the main steps of [39]. The Slavnov-Taylor identity is:

P νΠ(g)
µν (P ) = −

[

δν
µP 2 − PµP ν + Π(g)ν

µ (P )
]

Π(g)
g ν (P ) , (5.9)

where Π
(g)
µν (P ) is the full gluon self-energy and Π

(g)
g ν (P ) is related to the Coulomb-ghost

self-energy Π
(g)
g via the relation Π

(g)
g (P ) = pi Π

(g)
g i (P ). Note that identity (5.9) is exact

and valid for all momenta P . In the sequel, concentrate on the soft momentum region.

When reading the identity (5.9) in perturbation in powers of the coupling g, we can deduce

the two already known transversality conditions:

P νδΠ(g)
µν (P ) = 0; PµP ν ∗Π(g)

µν (P ) = 0, (5.10)
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where δΠ is the hard thermal loop and ∗Π the HTL-dressed one-loop-order self-energy. For

the present purposes, we need the Coulomb-ghost self-energy only to lowest order, and it

is derived in [39] to read:

Π(g)
g µ (P ) = −

g2NcT

16
δi
µ p̂i, (5.11)

which is already of order g2T and has the limit Π
(g)
g µ (ω,p → 0) = 0. From this we get the

relation [39]:

P ν ∗Π(g)
νµ (P ) =

g2NcT

16

ω

p
∗∆−1

gl (P )

(

1,
ω

p
p̂

)

µ

, (5.12)

where ∗∆gl is the dressed longitudinal gluon propagator. Since the right-hand side of (5.12)

is real, we immediately obtain:

P νIm ∗Π(g)
νµ (P ) = 0. (5.13)

From here, it is straightforward to show that [39]:

γgl (0) = γgt (0) , (5.14)

with the same definition of the damping rates as the one adopted in [35, 36].

The above arguments are correct and form an important confirmation that, on physical

grounds, the longitudinal and transverse gluon damping rates have to be equal at zero

momentum. We have emphasized on many occasions that any consistent computational

scheme ought to yield this equality. However, the calculation in [35, 36] and similar works

are explicit whereas those in [39] are formal: the loop integrals and Matsubara sums are

never done explicitly; no infrared cutoff is introduced to regulate the infrared sector and

there is no mention of what region should be kept in the integral/sum. All these issues are

at the heart of any explicit calculation and have to be dealt with, often case by case: when

sensitivity is expected, different sets of rules can and do lead to different results.

Having found an infrared sensitivity in γgl (0)η−∞ means we must not infer that the

whole γgl (0) is the limit η → 0 of the quantity γgl (0)η−∞ we calculated. Now the iden-

tity (5.14) applies to the whole γgl (0) and not to γgl (0)η−∞. From this standpoint, this

identity does not invalidate the finding of [35, 36] but confirms formally the importance

of the ultrasoft contributions γgl (0)0−η which we have not calculated. We want to stress

that the result of [35, 36] has never been used to imply a difference between γgl (0) and

γgt (0): on the contrary, relying on the physical equality between the two, the result has

been used instead to argue for the importance of the ultrasoft region and the sensitivity of

the hard-thermal-loop perturbation to it.

Infrared cutoff regularization has been used as a mean to carry forward with the

calculation beyond leading order. Ideally, one would have preferred to use a regularization

scheme that allows k to run from 0 to ∞. The introduction by hand of a magnetic mass in

the static magnetic propagator is a possibility, but that has been questioned in the past:

it is not clear that the chromomagnetic effects would manifest themselves only in the form

of a simple shift in the static chromomagnetic propagator. This regularization scheme may
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also have problems with gauge dependence. In any case, even that scheme is not free from

infrared divergences.

One may suggest to use dimensional regularization and there are already explicit ex-

pressions for the dressed propagators in d dimensions, see for example [43, 44]. But it does

not seem a priori straightforward to work with on-shell expressions involving both dressed

propagators and vertices, expressions of the generic type

T
∑

k0

∫

ddk

∫

dΩS1

∫

dΩS2

f (̂s1, ŝ2)

PS1 KS1 PS2 KS2

∗∆ (K) ∗∆ (Q) ,

knowing that p has to be kept non-zero, even in the calculation of γgl (0). And even in

the eventuality of these integrals being done, one is not assured of being immune from

infrared sensitivity. Indeed, consider as an example the result in [43] for the dimensionally

regulated hard gauge boson damping rate to next-to-leading log order:

γ =
g2NcT

4π

[

−1/ε + ln
(

m/M̄
)]

, (5.15)

where Nc the number of colors, m the Debye screening mass, M̄ the MS renormalization

scale set at the order of γ itself and ε = 3 − d. An interplay between the infrared and

ultraviolet divergences occurring in the calculations as explained in [43] removes the infrared

sensitivity of this coefficient to recover the known result estimated by other means [31],

but the point to retain is that the dimensionally-regulated calculation itself is sensitive to

the regularization scheme. One can argue that matters will be different for the non-moving

plasmon damping rate γgl (0) since, on physical grounds and by gauge invariance, one ought

to get a clean finite number. This is what one hopes for of course, but that remains to be

seen explicitly.

A. The other terms in late momentum expansion

This appendix gives details on how we perform the integrals involved in the late momentum

expansion of the damping rate γs (p) we have not shown in subsection 3.2. We will try to

use as clear and concise a notation as possible.

The second type of integrals we have to deal with is the following:

Iρ∂kρ =

∫ +∞

η
dk

∫ +∞

−∞

dωf(k, ω, 1 − ω)ρi(ω, k)∂kρs(1 − ω, k). (A.1)

As before, the discussion has to be carried out contribution by contribution, using the

structure of the spectral functions (3.12) and (3.15). The first contribution to consider is

the one that involves two delta functions
∫ +∞

η
dk

∫ +∞

−∞

dω zi f(k, ω, 1 − ω) δ (ω ∓ ωi) ∂k [zsδ (1 − ω ∓ ωs0)] .

When the derivative over k is applied to zs(k), we have zero contribution. Indeed, in

order for it to be nonvanishing, the energies must here too satisfy ±ωs0(k) ± ωi(k) = 1,
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forbidden by kinematics as already mentioned. But when applying the k-derivative to

the delta function, we also have zero contribution. This is simply because there is no

intersection between the supports of the two delta functions, even if they are involved

through derivatives, first order as in here or higher. The other contribution is a cut-residue,

namely
∫ +∞

η
dk

∫ +∞

−∞

dωf(k, ω, 1 − ω)βi(k, ω)Θ(k − |ω|) ∂k [zsδ (1 − ω ∓ ωs0)] .

We first apply the derivative over k to zs and we get the piece
∫ +∞

η
dk z

′
sf(k, 1 − ωs0, ωs0)βi (k, 1 − ωs0) ,

where z
′
s stands for dzs(k)/dk. We then apply it to δ (1 − ω ∓ ωs0) and use the standard

rules regulating the handling of the delta distribution and we always check the results

by regularizing either the derivative ∂k or the delta function itself. Only ω = 1 − ωs0

contributes and we obtain
∫ +∞

η
dk ω′

s0 zs ∂ω [f(k, 1 − ω, ω)βi (k, 1 − ω)]|ω=ωs0
.

Putting the above two contributions together, we obtain the following result:

Iρ∂kρ =

∫ +∞

η
dk

[

z
′
sf(k, 1 − ωs0, ωs0) βi (k, 1 − ωs0)

+ω′
s0 zs ∂ω [f(k, 1 − ω, ω)βi (k, 1 − ω)]|ω=ωs0

]

. (A.2)

The third type of integrals we have to deal with is one that involves a second derivative

in k:

Iρ∂2

k
ρ =

∫ +∞

η
dk

∫ +∞

−∞

dωf(k, ω, 1 − ω)ρi(k, ω) ∂2
kρs(1 − ω, k). (A.3)

The steps to treat the different contributions parallel those followed for Iρ∂kρ. As explained

before, the δδ contribution is zero because of kinematics. Therefore, the only contribution

to look at is
∫ +∞

η
dk

∫ +∞

−∞

dωf(k, ω, 1 − ω)βi(k, ω)Θ(k − |ω|) ∂2
k [zs δ (1 − ω ∓ ωs0)] .

We have to use the identity ∂2
k (zs δ) = z

′′
s δ+2z′s ∂kδ+zs ∂2

kδ, where z
′′
s stands for the second

derivative of zs (k). The term involving z
′′
s δ yields

∫ +∞

η dkz
′′
sf(k, 1−ωs0, ωs0)βi (k, 1 − ωs0).

The two other terms z
′
s ∂kδ + zs ∂2

kδ give together the following result

∫ +∞

η
dk

[(

zsω
′′
s0 + 2z′sω

′
s0

)

∂ω + zsω
′2
s0∂

2
ω

]

[f(k, 1 − ω, ω)βi (k, 1 − ω)]
∣

∣

ω=ωs0
.

The procedure is to replace ∂k by ωs0∂ω and apply the usual rules regulating the handling

of the delta distribution. Putting the above results together, we obtain:

Iρ∂2

k
ρ =

∫ +∞

η
dk

[

z
′′
sf(k, 1 − ωs0, ωs0)βi (k, 1 − ωs0)
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+
[(

zsω
′′
s0 + 2z′sω

′
s0

)

∂ω + zsω
′2
s0∂

2
ω

]

[f(k, 1 − ω, ω)βi (k, 1 − ω)]
∣

∣

ω=ωs0

]. (A.4)

Along similar lines we find the integral involving the third derivative in k:

Iρ∂3

k
ρ =

∫ +∞

η
dk

∫ +∞

−∞

dωf(k, ω, 1 − ω)ρi(ω, k)∂3
kρs(1 − ω, k)

=

∫ +∞

η
dk

[[

z
(3)
s +

(

3z′′sω
′
s0 + 3z′sω

′′
s0 + zsω

(3)
s0

)

∂ω (A.5)

+
(

3z′s0ω
′2

s0 + 3zsω
′′
s0ω

′
s0

)

∂2
ω + zsω

′3

s0∂
3
ω

]

[f(k, 1 − ω, ω)βi (k, 1 − ω)]
∣

∣

∣

ω=ωs0

]

,

and the one involving the fourth derivative:

Iρ∂4

k
ρ =

∫ +∞

η
dk

∫ +∞

−∞

dωf(k, ω, 1 − ω)ρi(ω, k)∂4
kρs(1 − ω, k)

=

∫ +∞

η
dk

[[

z
(4)
s +

(

4z(3)s ω′
s0 + 6z′′sω

′′
s0 + 4z′sω

(3)
s0 + zsω

(4)
s0

)

∂ω

+
(

6z′′sω
′2

s0 + 12z′sω
′′
s0ω

′
s0 + zs

(

4ω
(3)
s0 ω′

s0 + 3ω′′2

s0

))

∂2
ω +

(

4z′sω
′3

s0 + 6zsω
′′
s0ω

′2
s0

)

∂3
ω

+ zsω
′4

s0∂
4
ω

]

[f(k, 1 − ω, ω)βi (k, 1 − ω)]|ω=ωs0

]

. (A.6)

The next types of integrals we must handle are those coming from deriving the spectral

density ρs(ωs0 (p)− ω, k) in (3.20) and (3.21) with respect to p. It is convenient to handle

these terms by reintroducing δ (ωs0 (p) − ω − ω′) and performing the derivative on it. The

first such generic term is:

Iρρ∂ωδ =

∫ +∞

η
dk

∫ +∞

−∞

dω

∫ +∞

−∞

dω′ ∂ωδ
(

1 − ω − ω′
)

f(k, ω, ω′)ρi(ω, k)ρs(ω
′, k)

= −

∫ +∞

η
dk

∫ +∞

−∞

dω ∂ω

[

f(k, ω, ω′)ρi(k, ω)
]
∣

∣

ω′=1−ω
ρs(1 − ω, k). (A.7)

Here too the residue-residue contribution is zero because of the same kinematics. What

remains to calculate is the cut-residue contribution, which is equal to

−

∫ +∞

η
dk

∫ +∞

−∞

dω zs∂ω

[

f(k, ω, ω′)βi (k, ω) Θ(k − |ω|)
]
∣

∣

ω′=1−ω
δ (1 − ω ∓ ωs0)

and straightforwardly shown to yield:

Iρρ∂ωδ = −

∫ +∞

η
dk zs ∂ω [f(k, ω, ωs0)βi(k, ω)]|ω=1−ωs0

. (A.8)

The other term involves a second order ω-derivative; it is worked out straightforwardly:

Iρρ∂2
ωδ =

∫ +∞

η
dk

∫ +∞

−∞

dω

∫ +∞

−∞

dω′ ∂2
ωδ

(

1 − ω − ω′
)

f(k, ω, ω′)ρi(ω, k)ρs(ω
′, k)

= −

∫ +∞

η
dkzs ∂2

ω [f(k, ω, ωs0)βi(k, ω)]
∣

∣

ω=1−ωs0

. (A.9)
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Last are integrals involving an ω-derivative over δ (1 − ω − ω′) and k-derivatives over ρs.

The treatment is similar and straightforward too. With one k-derivative we obtain:

Iρ∂kρ∂ωδ =

∫ +∞

η
dk

∫ +∞

−∞

dω

∫ +∞

−∞

dω′ ∂ωδ
(

1 − ω − ω′
)

f(k, ω, ω′)ρi(ω, k)∂kρs(ω
′, k)

= −

∫ +∞

η
dk[z′s ∂ω [f(k, ω, ωs0)βi(k, ω)]|ω=1−ωs0

− zsω
′
s0 ∂ω′

[

∂ω [f(k, ω, ωs0)βi(k, ω)]ω=1−ω′

]
∣

∣

ω′=ωs0

], (A.10)

and with a second-order k-derivative we get:

Iρ∂2

k
ρ∂ωδ =

∫ +∞

η
dk

∫ +∞

−∞

dω

∫ +∞

−∞

dω′ ∂ωδ
(

1 − ω − ω′
)

f(k, ω, ω′)ρi(ω, k)∂2
kρs(ω

′, k)

= −

∫ +∞

η
dk[z′′s ∂ω [f(k, ω, ωs0)βi(k, ω)]|ω=1−ωs0

− 2z′sω
′
s0 ∂ω′

[

∂ω [f(k, ω, ωs0)βi(k, ω)]ω=1−ω′

]
∣

∣

ω′=ωs0

− zs

(

ω′′
s0∂ω′ + ω′2

s0∂
2
ω′

) [

∂ω [f(k, ω, ωs0)βi(k, ω)]ω=1−ω′

]∣

∣

ω′=ωs0

]. (A.11)

These are generically all the types of integrals we will have to evaluate. In each case,

we have to examine the infrared behavior, i.e., the behavior close to η. In the eventuality

of the presence of an infrared divergence, we have to extract it analytically. The remaining

finite part of the integral is generally performed numerically.
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